[1] |
Guan SY, Leng RX, Tao JH, et al. Hypoxia-inducible factor-1α: A promising therapeutic target for autoimmune diseases[J]. Expert Opin Ther Targets, 2017, 21(7): 715-723.
doi: 10.1080/14728222.2017.1336539
URL
|
[2] |
杨大江, 郝晓鸣, 梁新华. 口腔鳞状细胞癌组织中HIF-1α,VEGF-C的表达及与淋巴管生成的关系[J]. 口腔医学研究, 2014, 30(2): 159-162+165.
|
[3] |
张本凯, 王政, 朱峰, 等. PHD2/HIF-1α介导β-AR调控大鼠心梗后心力衰竭[J]. 中华急诊医学杂志, 2020, 29(2): 239-242.
|
[4] |
Gladek I, Ferdin J, Horvat S, et al. HIF-1α gene polymorphisms and human diseases: Graphical review of 97 association studies[J]. Genes Chromosomes Cancer, 2017, 56(6): 439-452.
doi: 10.1002/gcc.v56.6
URL
|
[5] |
Wang HT, Lindborg C, Lounev V, et al. Cellular hypoxia promotes heterotopic ossification by amplifying BMP signaling[J]. J Bone Miner Res, 2016, 31(9): 1652-1665.
doi: 10.1002/jbmr.2848
pmid: 27027798
|
[6] |
Guo XQ, Qi L, Yang J, et al. Salidroside accelerates fracture healing through cell-autonomous and non-autonomous effects on osteoblasts[J]. Cell Tissue Res, 2017, 367(2): 197-211.
doi: 10.1007/s00441-016-2535-2
pmid: 27942852
|
[7] |
Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014, 507(7492): 323-328.
doi: 10.1038/nature13145
|
[8] |
Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology[J]. Annu Rev Pathol, 2014, 9: 47-71.
doi: 10.1146/annurev-pathol-012513-104720
pmid: 23937437
|
[9] |
Miyauchi Y, Sato Y, Kobayashi T, et al. HIF-1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis[J]. Proc Natl Acad Sci USA, 2013, 110(41): 16568-16573.
doi: 10.1073/pnas.1308755110
URL
|
[10] |
Stegen S, Laperre K, Eelen G, et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes[J]. Nature, 2019, 565(7740): 511-515.
doi: 10.1038/s41586-019-0874-3
|
[11] |
Cheng KJ, Bao YY, Zhou SH. The role of hypoxia inducible factor in nasal inflammations[J]. Eur Rev Med Pharmacol Sci, 2016, 20(24): 5067-5076.
|
[12] |
Zhao Q, Shen X, Zhang W, et al. Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss[J]. Bone, 2012, 50(3): 763-770.
doi: 10.1016/j.bone.2011.12.003
pmid: 22193550
|
[13] |
Eltzschig HK, Carmeliet P. Hypoxia and inflammation[J]. N Engl J Med, 2011, 364(7):656-665.
doi: 10.1056/NEJMra0910283
URL
|
[14] |
Knowles HJ. Hypoxia-induced fibroblast growth factor 11 stimulates osteoclast-mediated resorption of bone[J]. Calcif Tissue Int, 2017, 100(4): 382-391.
doi: 10.1007/s00223-016-0228-1
URL
|
[15] |
Hadi HA, Smerdon G, Fox SW. Osteoclastic resorptive capacity is suppressed in patients receiving hyperbaric oxygen therapy[J]. Acta Orthop, 2015, 86(2): 264-269.
doi: 10.3109/17453674.2014.964621
pmid: 25238438
|
[16] |
Blau JE, Collins MT. The PTH-vitamin D-FGF23 axis[J]. Rev Endocr Metab Disord, 2015, 16(2): 165-174.
doi: 10.1007/s11154-015-9318-z
URL
|
[17] |
Hong JM, Kim TH, Kim HJ, et al. Genetic association of angiogenesis- and hypoxia-related gene polymorphisms with osteonecrosis of the femoral head[J]. Exp Mol Med, 2010, 42(5): 376-385.
pmid: 20215856
|
[18] |
Radke S, Battmann A, Jatzke S, et al. Expression of the angiomatrix and angiogenic proteins CYR61, CTGF, and VEGF in osteonecrosis of the femoral head[J]. J Orthop Res, 2006, 24(5): 945-952.
pmid: 16609965
|
[19] |
Weinstein RS, Hogan EA, Borrelli MJ, et al. The pathophysiological sequence of glucocorticoid-induced osteonecrosis of the femoral head in male mice[J]. Endocrinology, 2017, 158(11): 3817-3831.
doi: 10.1210/en.2017-00662
pmid: 28938402
|
[20] |
Fowler TW, Acevedo C, Mazur CM, et al. Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis[J]. Sci Rep, 2017, 7: 44618.
doi: 10.1038/srep44618
pmid: 28327602
|
[21] |
陈彬, 李琥, 穆超, 等. 大鼠正畸牙移动中HIF-1α的表达[J]. 口腔生物医学, 2011, 2(2): 78-81.
|
[22] |
Kim YS, Shin SI, Kang KL, et al. Nicotine and lipopolysaccharide stimulate the production of MMPs and prostaglandin E2 by hypoxia-inducible factor-1α up-regulation in human periodontal ligament cells[J]. J Periodontal Res, 2012, 47(6): 719-728.
doi: 10.1111/j.1600-0765.2012.01487.x
pmid: 22571166
|
[23] |
Winkler S, Niedermair T, Füchtmeier B, et al. The impact of hypoxia on mesenchymal progenitor cells of human skeletal tissue in the pathogenesis of heterotopic ossification[J]. Int Orthop, 2015, 39(12): 2495-2501.
doi: 10.1007/s00264-015-2995-0
pmid: 26432574
|
[24] |
Jacobsen KA, Al-Aql ZS, Wan C, et al. Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling[J]. J Bone Miner Res, 2008, 23(5): 596-609.
doi: 10.1359/jbmr.080103
pmid: 18433297
|
[25] |
Miyamoto T. Mechanism underlying post-menopausal osteoporosis: HIF-1α is required for osteoclast activation by estrogen deficiency[J]. Keio J Med, 2015, 64(3): 44-47.
doi: 10.2302/kjm.2015-0003-RE
pmid: 26255954
|
[26] |
Wan C, Gilbert SR, Wang Y, et al. Activation of the hypoxia-inducible factor-1α pathway accelerates bone regeneration[J]. Proc Natl Acad Sci USA, 2008, 105(2): 686-691.
doi: 10.1073/pnas.0708474105
URL
|
[27] |
Donneys A, Deshpande SS, Tchanque-Fossuo CN, et al. Deferoxamine expedites consolidation during mandibular distraction osteogenesis[J]. Bone, 2013, 55(2): 384-390.
doi: 10.1016/j.bone.2013.04.005
pmid: 23598047
|