[1] |
Wang H, Shan H, Lü HT. Preparative separation of liquiritigenin and glycyrrhetic acid from glycyrrhiza uralensis Fisch using hydrolytic extraction combined with high-speed countercurrent chromatography[J]. Biomed Chromatogr, 2020, 34(4): e4788.
|
[2] |
Ishiuchi K, Morinaga O, Ohkita T, et al. 18β-glycyrrhetyl-3-O-sulfate would be a causative agent of licorice-induced pseudoaldosteronism[J]. Sci Rep, 2019, 9(1): 1587.
doi: 10.1038/s41598-018-38182-2
pmid: 30733510
|
[3] |
Richard SA. Exploring the pivotal immunomodulatory and anti-inflammatory potentials of glycyrrhizic and glycyrrhetinic acids[J]. Mediators Inflamm, 2021, 2021: 6699560.
|
[4] |
Lai TF, Shen Y, Chen CC, et al. Glycyrrhizic acid ameliorates myocardial ischemia-reperfusion injury in rats through inhibiting endoplasmic reticulum stress[J]. Eur J Pharmacol, 2021, 908: 174353.
|
[5] |
Zhou SF, Liu GD, Si ZX, et al. Glycyrrhizin, an HMGB1 inhibitor, suppresses interleukin-1β-induced inflammatory responses in chondrocytes from patients with osteoarthritis[J]. Cartilage, 2021, 13(2_suppl): 947S-955S.
|
[6] |
Xu CL, Liang CH, Sun WX, et al. Glycyrrhizic acid ameliorates myocardial ischemic injury by the regulation of inflammation and oxidative state[J]. Drug Des Devel Ther, 2018, 12: 1311-1319.
|
[7] |
Jiang RH, Xu JJ, Zhu DC, et al. Glycyrrhizin inhibits osteoarthritis development through suppressing the PI3K/AKT/NF-κB signaling pathway in vivo and in vitro[J]. Food Funct, 2020, 11(3): 2126-2136.
|
[8] |
Tsai JJ, Pan PJ, Hsu FT, et al. Glycyrrhizic acid modulates apoptosis through extrinsic/intrinsic pathways and inhibits protein kinase B- and extracellular signal-regulated kinase-mediated metastatic potential in hepatocellular carcinoma in vitro and in vivo[J]. Am J Chin Med, 2020, 48(1): 223-244.
|
[9] |
Crance JM, Lévêque F, Biziagos E, et al. Studies on mechanism of action of glycyrrhizin against hepatitis A virus replication in vitro[J]. Antiviral Res, 1994, 23(1): 63-76.
|
[10] |
Gowda P, Patrick S, Joshi SD, et al. Glycyrrhizin prevents SARS-CoV-2 S1 and Orf3a induced high mobility group box 1 (HMGB1) release and inhibits viral replication[J]. Cytokine, 2021, 142: 155496.
|
[11] |
Selyutina OY, Mastova AV, Shelepova EA, et al. pH-sensitive glycyrrhizin based vesicles for nifedipine delivery[J]. Molecules, 2021, 26(5): 1270.
|
[12] |
Zheng L, Zhu Q, Xu C, et al. Glycyrrhizin mitigates radiation-induced acute lung injury by inhibiting the HMGB1/TLR4 signalling pathway[J]. J Cell Mol Med, 2020, 24(1): 214-226.
doi: 10.1111/jcmm.14703
pmid: 31657123
|
[13] |
Zhu ZW, Guo YN, Li XP, et al. Glycyrrhizic acid attenuates balloon-induced vascular injury through inactivation of RAGE signaling pathways[J]. Cardiovasc Innov Appl, 2020, 6(2): 239-249.
|
[14] |
Mollica L, De Marchis F, Spitaleri A, et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities[J]. Chem Biol, 2007, 14(4): 431-441.
|
[15] |
Kim SW, Jin YC, Shin JH, et al. Glycyrrhizic acid affords robust neuroprotection in the postischemic brain via anti-inflammatory effect by inhibiting HMGB1 phosphorylation and secretion[J]. Neurobiol Dis, 2012, 46(1): 147-156.
|
[16] |
Hu ZH, Xiao M, Cai HX, et al. Glycyrrhizin regulates rat TMJOA progression by inhibiting the HMGB1-RAGE/TLR4-NF-κB/A KT pathway[J]. J Cell Mol Med, 2022, 26(3): 925-936.
|
[17] |
Zhu LH, Wei MC, Yang N, et al. Glycyrrhizic acid alleviates the meconium-induced acute lung injury in neonatal rats by inhibiting oxidative stress through mediating the Keap1/Nrf2/HO-1 signal pathway[J]. Bioengineered, 2021, 12(1): 2616-2626.
doi: 10.1080/21655979.2021.1937445
pmid: 34499011
|
[18] |
Wang Y, Chen Q, Shi CX, et al. Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress[J]. Mol Med Rep, 2019, 20(5): 4081-4090.
doi: 10.3892/mmr.2019.10660
pmid: 31545489
|
[19] |
Kaneko S, Satoh T, Chiba J, et al. Interleukin-6 and interleukin-8 levels in serum and synovial fluid of patients with osteoarthritis[J]. Cytokines Cell Mol Ther, 2000, 6(2): 71-79.
pmid: 11108572
|
[20] |
Ryu JH, Yang S, Shin Y, et al. Interleukin-6 plays an essential role in hypoxia-inducible factor 2α-induced experimental osteoarthritic cartilage destruction in mice[J]. Arthritis Rheum, 2011, 63(9): 2732-2743.
|
[21] |
Tabeian H, Betti BF, Dos Santos Cirqueira C, et al. IL-1β damages fibrocartilage and upregulates MMP-13 expression in fibrochondrocytes in the condyle of the temporomandibular joint[J]. Int J Mol Sci, 2019, 20(9): 2260.
|
[22] |
Glasson SS. In vivo osteoarthritis target validation utilizing genetically-modified mice[J]. Curr Drug Targets, 2007, 8(2): 367-376.
pmid: 17305514
|
[23] |
Altay MA, Ertürk C, Bilge A, et al. Evaluation of prolidase activity and oxidative status in patients with knee osteoarthritis: Relationships with radiographic severity and clinical parameters[J]. Rheumatol Int, 2015, 35(10): 1725-1731.
doi: 10.1007/s00296-015-3290-5
pmid: 25994092
|
[24] |
Collins JA, Wood ST, Nelson KJ, et al. Oxidative stress promotes peroxiredoxin hyperoxidation and attenuates pro-survival signaling in aging chondrocytes[J]. J Biol Chem, 2016, 291(13): 6641-6654.
doi: 10.1074/jbc.M115.693523
pmid: 26797130
|
[25] |
Eleutherio ECA, Silva Magalhães RS, de Araújo Brasil A, et al. SOD1, more than just an antioxidant[J]. Arch Biochem Biophys, 2021, 697: 108701.
|
[26] |
Cai DW, Yin SS, Yang J, et al. Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis[J]. Arthritis Res Ther, 2015, 17: 269.
doi: 10.1186/s13075-015-0774-3
pmid: 26408027
|
[27] |
Gavr II lidis C, Miwa S, von Zglinicki T, et al. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2[J]. Arthritis Rheum, 2013, 65(2): 378-387.
|
[28] |
Altindag O, Erel O, Aksoy N, et al. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis[J]. Rheumatol Int, 2007, 27(4): 339-344.
pmid: 17096092
|
[29] |
Luo YY, Li J, Wang B, et al. Protective effect of glycyrrhizin on osteoarthritis cartilage degeneration and inflammation response in a rat model[J]. J Bioenerg Biomembr, 2021, 53(3): 285-293.
doi: 10.1007/s10863-021-09889-1
pmid: 33725224
|